Search results for "alpine development"

showing 2 items of 2 documents

Abundance of NARG, NIRK and NOSZ genes of denirifying bacteria during primary successions of a glacier foreland

2007

[SDV.EE]Life Sciences [q-bio]/Ecology environment[SDV.EE] Life Sciences [q-bio]/Ecology environmentglacieralpine developmentmicrobial communityrhizospherecolonizationquantificationdiversitysoil
researchProduct

Abundance of narG , nirS , nirK , and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland

2006

ABSTRACT Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 × 10 5 to 8.9 × 10 5 copies per nanogram of DNA but smaller amounts of narG , nirK , and nosZ target molecules. Thus, numbers of narG , nirK , nirS , and nosZ copies per nanogram of DNA ranged from 2.1 × 10 3 to 2.6 × 10 4 , 7.4 × 10 2 to 1.4 × 10 3 , 2.5 × 10 2 to 6.4 × 10 3 , and 1.2 × 10 3 to 5.5 × 10 3 , respectively. The densities of 16S rRNA genes per gram of soil increased with…

ALPINE DEVELOPMENTDNA BacterialglacierNitrite ReductasesDenitrificationNitrogenDenitrification pathwayDIVERSITYBiologyNitrate ReductasePolymerase Chain ReactionApplied Microbiology and BiotechnologyCOLONIZATIONMicrobial EcologyDenitrifying bacteriaRNA Ribosomal 16SBotanyIce CoverMICROBIAL COMMUNITIESGlacier forelandPoaPrimary successionEcosystemSoil Microbiology[SDV.EE]Life Sciences [q-bio]/Ecology environmentRhizosphereBacteriaBase SequenceEcologyRHIZOSPHEREQUANTIFICATIONNitrite reductaseSOILSRNA BacterialGenes BacterialAustriaOxidoreductasesSoil microbiologyFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct